Pediatr. praxi. 2024;25(5):286-293 | DOI: 10.36290/ped.2024.055

Troponin elevation in children

MUDr. Hana Pudichová1, doc. MUDr. Jan Pavlíček Ph.D., MHA1, 2, 3, MUDr. Bořek Trávníček, MBA1, 2, MUDr. Markéta Nowaková, MBA1, 2, MUDr. Miroslava Burešová1, 2, MUDr. Jiří Pudich2, 4
1 Klinika dětského lékařství, Fakultní nemocnice Ostrava, Ostrava
2 Lékařská fakulta, Ostravská univerzita, Ostrava
3 Centrum biomedicínského výzkumu, Fakultní nemocnice Hradec Králové
4 Interní a kardiologická klinika, Fakultní nemocnice Ostrava, Ostrava

Troponins T and I are important biomarkers of cardiac damage, the levels of which are currently determined by highly sensitive diagnostic kits. In the adult population, troponin is of central importance in the diagnosis of acute coronary syndrome. In pediatrics, the reasons for troponin testing are different, with acute myocarditis of infectious or non-infectious aetiology being the most common indication. Troponin levels can rule out or to a great degree confirm this disease and correlate with its severity; the levels, however, can not reliably predict late myocardial dysfunction. Still, troponin, along with natriuretic peptides, can be used in the monitoring of cardiomyopathies to predict complications and prognosis. In congenital heart disease, troponin is most commonly used to evaluate the postoperative course. In the context of diagnosing myocardial ischemia in children, troponin is important when coronary artery pathology is suspected in Kawasaki disease, post-COVID syndrome, congenital anomalies, or after surgical coronary interventions. Other possible indications for troponin testing include chest trauma, electric shock, sepsis, renal failure, carbon monoxide intoxication, arrhythmias, cardiotoxic therapy, or endocrine and neuromuscular diseases. It is always necessary to know the normal values for the used diagnostic kit and the type of troponin, to assess the dynamics of values over time and to correlate the laboratory results with clinical examination and other diagnostic methods.

Keywords: troponin T, troponin I, myocarditis, cardiomyopathy, PIMS-TS, cardiotoxicity, congenital heart defects.

Accepted: October 21, 2024; Published: November 15, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Pudichová H, Pavlíček J, Trávníček B, Nowaková M, Burešová M, Pudich J. Troponin elevation in children. Pediatr. praxi. 2024;25(5):286-293. doi: 10.36290/ped.2024.055.
Download citation
PDF will be unlocked 15.11.2025

References

  1. Bohn MK, Steele S, Hall A, et al. Cardiac Biomarkers in Pediatrics: An Undervalued Resource. Clin Chem. 2021;67(7):947-958. Go to original source... Go to PubMed...
  2. Guyther J, Cantwell L. Big Tests in Little People. Emerg Med Clin North Am. 2021;39(3):467-478. Go to original source... Go to PubMed...
  3. Yoldaş T, Örün UA. What is the Significance of Elevated Troponin I in Children and Adolescents? A Diagnostic Approach. Pediatr Cardiol. 2019;40(8):1638-1644. Go to original source... Go to PubMed...
  4. Okyay K, Sadiç BÖ, Şahinarslan A, et al. Turkish Society of Cardiology consensus paper on the rational use of cardiac troponins in daily practice. Anatol J Cardiol. 2019;21(6):331-344. Go to original source... Go to PubMed...
  5. Lam E, Higgins V, Zhang L, et al. Normative Values of High-Sensitivity Cardiac Troponin T and N-Terminal pro-B-Type Natriuretic Peptide in Children and Adolescents: A Study from the CALIPER Cohort. J Appl Lab Med. 2021;6(2):344-353. Go to original source... Go to PubMed...
  6. Kiess A, Green J, Willenberg A, et al. Age-Dependent Reference Values for hs-Troponin T and NT-proBNP and Determining Factors in a Cohort of Healthy Children (The LIFE Child Study). Pediatr Cardiol. 2022;43(5):1071-1083. Go to original source... Go to PubMed...
  7. McEvoy JW, Wang D, Brady T, et al. Myocardial Injury Thresholds for 4 High-Sensitivity Troponin Assays in a Population-Based Sample of US Children and Adolescents. Circulation 2023;148(1):7-16. Go to original source... Go to PubMed...
  8. Howard A, Hasan A, Brownlee J , et al. Pediatric myocarditis protocol: an algorithm for early identification and management with retrospective analysis for validation. Pediatr Cardiol. 2020;41:316-326. Go to original source... Go to PubMed...
  9. Caforio AL, Pankuweit S, Arbustini E, et al. European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34(33):2636-2648, 2648a-2648d. Go to original source... Go to PubMed...
  10. Chong D, Chua YT, Chong SL, et al. What Raises Troponins in the Paediatric Population? Pediatr Cardiol. 2018;39(8):1530-1534. Go to original source... Go to PubMed...
  11. Butts RJ, Boyle GJ, Deshpande SR, et al. Characteristics of Clinically Diagnosed Pediatric Myocarditis in a Contemporary Multi-Center Cohort. Pediatr Cardiol. 2017;38(6):1175-1182. Go to original source... Go to PubMed...
  12. Ammirati E, Cipriani M, Moro C, et al. Clinical Presentation and Outcome in a Contemporary Cohort of Patients With Acute Myocarditis: Multicenter Lombardy Registry. Circulation 2018;138(11):1088-1099. Go to original source... Go to PubMed...
  13. Ammann P, Naegeli B, Schuiki E, et al. Long-term outcome of acute myocarditis is independent of cardiac enzyme release. Int J Cardiol. 2003;89(2-3):217-222. Go to original source... Go to PubMed...
  14. Sato YZ, Molkara DP, Daniels LB, et al. Cardiovascular biomarkers in acute Kawasaki disease. Int J Cardiol. 2013;164:58-63. Go to original source... Go to PubMed...
  15. Doležel Z, Macků M, Fráňová J, et al. Kawasakiho choroba provázená šokem. Pediatr. praxi. 2020;21(5):364-368. Go to original source...
  16. Molaei A, Khomahani A, SadeghiShabestari M, et al. Cardiac biomarkers for early detection of cardiac involvement in children with Kawasaki disease: a cross-sectional study. Int J Pediatr. 2019;7(12):10573-10582. Go to original source...
  17. Taddio A, Rossi ED, Monasta L, et al. Describing Kawasaki shock syndrome: results from a retrospective study and literature review. Clin Rheumatol. 2017;36(1):223-228. Go to original source... Go to PubMed...
  18. Fukazawa R, Kobayashi J, Ayusawa M, et al. Japanese Circulation Society Joint Working Group. JCS/JSCS 2020 Guideline on Diagnosis and Management of Cardiovascular Sequelae in Kawasaki Disease. Circ J. 2020;84(8):1348-1407. Go to original source... Go to PubMed...
  19. Stará V. Kardiovaskulární projevy u syndromu multisystémové zánětlivé odpovědi asociované s covidem-19 u dětí (PIMS-TS). Čes-slov Pediat 2022;77(1):39-42. Go to original source...
  20. Alsaied T, Tremoulet AH, Burns JC, et al. Review of Cardiac Involvement in Multisystem Inflammatory Syndrome in Children. Circulation 2021;143(1):78-88. Go to original source... Go to PubMed...
  21. Basu S, Kim EJ, Sharron MP, et al. Strain Echocardiography and Myocardial Dysfunction in Critically Ill Children With Multi­system Inflammatory Syndrome Unrecognized by Conventional Echocardiography: A Retrospective Cohort Analysis. Pediatr Crit Care Med. 2022;23(3):e145-e152. Go to original source... Go to PubMed...
  22. Stasiak A, Perdas E, Smolewska E. Risk factors of a severe course of pediatric multi-system inflammatory syndrome temporally associated with COVID-19. Eur J Pediatr. 2022;181(10):3733-3738. Go to original source... Go to PubMed...
  23. Valverde I, Singh Y, Sanchez-de-Toledo J, et al. AEPC COVID-19 Rapid Response Team*. Acute Cardiovascular Manifestations in 286 Children With Multisystem Inflammatory Syndrome Associated With COVID-19 Infection in Europe. Circulation 2021;143(1):21-32. Go to original source... Go to PubMed...
  24. Walton M, Raghuveer G, Harahsheh A, et al. Cardiac Biomarkers Aid in Differentiation of Kawasaki Disease from Multi­system Inflammatory Syndrome in Children Associated with COVID-19. Pediatr Cardiol. 2023 Dec 29. Go to original source... Go to PubMed...
  25. Ozdemir O, Oguz D, Atmaca E, et al. Cardiac troponin T in children with acute rheumatic carditis. Pediatr Cardiol. 2011;32(1):55-58. Go to original source... Go to PubMed...
  26. Arbelo E, Protonotarios A, Gimeno JR, et al.; ESC Scientific Document Group. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J. 2023;44(37):3503-3626. Go to original source... Go to PubMed...
  27. Kubo T, Ochi Y, Baba Y, et al. Elevation of high-sensitivity cardiac troponin T and left ventricular remodelling in hypertrophic cardiomyopathy. ESC Heart Fail. 2020;7(6):3593-3600. Go to original source... Go to PubMed...
  28. Kehl DW, Buttan A, Siegel RJ, et al. Clinical utility of natriuretic peptides and troponins in hypertrophic cardiomyopathy. Int J Cardiol. 2016;218:252-258. Go to original source... Go to PubMed...
  29. Mohammed EHAHY, Al-Shamma H, Al-Muhanna MY. The Role of Highly Sensitive Troponin I in Diagnosis and Prognosis of Dilated Cardiomyopathy in Pediatric Age Group. Medical Journal of Babylon 2015;12(3):697-705.
  30. Wang W, Murray B, Tichnell C, et al. Clinical characteristics and risk stratification of desmoplakin cardiomyopathy. Europace 2022;24(2):268-277. Go to original source... Go to PubMed...
  31. Yamaguchi H, Awano H, Yamamoto T, et al. Serum cardiac troponin I is a candidate biomarker for cardiomyopathy in Duchenne and Becker muscular dystrophies. Muscle Nerve. 2022;65(5):521-530. Go to original source... Go to PubMed...
  32. Eerola A, Jokinen EO, Savukoski TI, et al. Cardiac troponin I in congenital heart defects with pressure or volume overload. Scand Cardiovasc J. 2013;47(3):154-159. Go to original source... Go to PubMed...
  33. Abiko M, Inai K, Shimada E, et al. The prognostic value of high sensitivity cardiac troponin T in patients with congenital heart disease. J Cardiol. 2018;71(4):389-393. Go to original source... Go to PubMed...
  34. Kotby AA, Abd Al Aziz MM, Husseiny AH, et al. Detection of early myocardial injury in children with ventricular septal defect using cardiac troponin I and two-dimensional speckle tracking echocardiography. Pediatr Cardiol. 2020;41(8):1548-1558. Go to original source... Go to PubMed...
  35. Wagdy R, Loweis N, Abdel-Wahab O, et al. Diagnostic and prognostic role of troponin i in neonates with critical duct-dependent congenital heart diseases. Alex J Pediatrics 2023;36(2):86-95. Go to original source...
  36. Ferraro S, Biganzoli E, Mannarino S, et al. High-Sensitivity Cardiac Troponin and the Management of Congenital Heart Disease in Newborns and Infants. Clin Chem. 2024;70(3):486-496. Go to original source... Go to PubMed...
  37. Das R, Mandal RN, Agarwal A, et al. Highly sensitive cardiac troponin T as a biomarker of myocardial injury in acyanotic congenital heart disease. Int. J. Pediatr. Res. 2020;6:069. Go to original source...
  38. Kojima T, Toda K, Oyanagi T, et al. Early assessment of cardiac troponin I predicts the postoperative cardiac status and clinical course after congenital heart disease surgery. Heart Vessels. 2020;35(3):417-421. Go to original source... Go to PubMed...
  39. Kozar EF, Plyushch MG, Popov AE, et al. Markers of myocardial damage in children of the first year of life with congenital heart disease in the early period after surgery with cardioplegic anoxia. Bull Exp Biol Med. 2015;158(4):421-424.Další literatura u autorky a na www.pediatriepropraxi.cz Go to original source... Go to PubMed...
  40. Montazer SH, Jahanian F, Khatir IG, et al. Prognostic Value of Cardiac Troponin I and T on Admission in Mortality of Multiple Trauma Patients Admitted to the Emergency Department: a Prospective Follow-up Study. Med Arch. 2019;73(1):11-14. Go to original source... Go to PubMed...
  41. Douillet D, Kalwant S, Amro Y, et al. Use of troponin assay after electrical injuries: a 15-year multicentre retrospective cohort in emergency departments. Scand J Trauma Resusc Emerg Med. 2021;29(1):141. Go to original source... Go to PubMed...
  42. Waldmann V, Narayanan K, Combes N, et al. Electrical cardiac injuries: current concepts and management. Eur Heart J. 2018;39(16):1459-1465. Go to original source... Go to PubMed...
  43. Zhang HL, Li SJ, Wang X, et al. Preoperative Evaluation and Midterm Outcomes after the Surgical Correction of Anomalous Origin of the Left Coronary Artery from the Pulmonary Artery in 50 Infants and Children. Chin Med J (Engl). 2017;130(23):2816-2822. Go to original source... Go to PubMed...
  44. Ro SS, Wan Q, Pasumarti N, et al. Post-operative troponin levels and left ventricular function in patients with d-transposition of the great arteries following the arterial switch operation. Int J Cardiovasc Imaging 2023;39(1):97-111. Go to original source... Go to PubMed...
  45. Al-Ata JA, Abdelmohsen GA, Bahaidarah SA, et al. Percutaneous coronary stent implantation in children and young infants following surgical repair of congenital heart disease. Cardiovasc Diagn Ther. 2023;13(4):638-649. Go to original source... Go to PubMed...
  46. Gikandi A, Gauvreau K, Kohlsaat K, et al. Postoperative Troponin Levels in Children Undergoing Open Heart Surgery With and Without Coronary Intervention. Pediatr Cardiol. 2024;45(1):184-195. Go to original source... Go to PubMed...
  47. Tsuda E, Hamaoka K, Suzuki H, et al. A survey of the 3-decade outcome for patients with giant aneurysms caused by Kawasaki disease. Am Heart J. 2014;167(2):249-258. Go to original source... Go to PubMed...
  48. Burns JC, El-Said H, Tremoulet AH, et al. Management of Myocardial Infarction in Children with Giant Coronary Artery Aneurysms after Kawasaki Disease. J Pediatr. 2020; 221:230-234. Go to original source... Go to PubMed...
  49. McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation 2017;135:e927-999. Go to original source... Go to PubMed...
  50. Schlapbach LJ, Andre MC, Grazioli S, et al. PIMS-TS working group of the Interest Group for Pediatric Neonatal Intensive Care (IGPNI) of the Swiss Society of Intensive Care and the Pediatric Infectious Diseases Group Switzerland (PIGS). Best Practice Recommendations for the Diagnosis and Management of Children With Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2 (PIMS-TS; Multisystem Inflammatory Syndrome in Children, MIS-C) in Switzerland. Front Pediatr. 2021;9:667507. Go to original source... Go to PubMed...
  51. Stidham T, McKee J, Vogt J, et al. Successful Intervention for a Thrombosed Giant Coronary Artery Aneurysm in Multisystem Inflammatory Syndrome in Children. JACC Case Rep. 2022;4(15):945-949. Go to original source... Go to PubMed...
  52. Tada H, Kojima N, Yamagami K, et al. Early diagnosis and treatments in childhood are associated with better prognosis in patients with familial hypercholesterolemia. Am J Prev Cardiol. 2022;12:100434. Go to original source... Go to PubMed...
  53. Eichhorn L, Thudium M, Jüttner B. The Diagnosis and Treat­ment of Carbon Monoxide Poisoning. Dtsch Arztebl Int. 2018;115(51-52):863-870. Go to original source... Go to PubMed...
  54. Garcia MA, Rucci JM, Thai KK, et al. Association between Troponin I Levels during Sepsis and Postsepsis Cardiovascular Complications. Am J Respir Crit Care Med. 2021;204(5):557-565. Go to original source... Go to PubMed...
  55. Cantinotti M, Clerico A, Giordano R, et al. Cardiac Troponin-T Release After Sport and Differences by Age, Sex, Training Type, Volume, and Intensity: A Critical Review. Clin J Sport Med. 2022;32(3):e230-e242. Go to original source... Go to PubMed...
  56. Baker P, Leckie T, Harrington D, et al. Exercise-induced cardiac troponin elevation: An update on the evidence, mechanism and implications. Int J Cardiol Heart Vasc. 2019;22:181-186. Go to original source... Go to PubMed...
  57. Jehlička P, Matas M, Rajdl D, et al. Jak hodnotit vysoce senzitivní troponin T u novorozenců? Čes-slov Pediat 2016; 71(4):212-215.
  58. Xu ZE, Mbugi J, Hu Y, et al. Serum troponin I: a potential biomarker of hypoxic-ischemic encephalopathy in term newborns. Childs Nerv Syst. 2022;38(2):295-301. Go to original source... Go to PubMed...
  59. Karlén J, Karlsson M, Eliasson H, et al. Cardiac Troponin T in Healthy Full-Term Infants. Pediatr Cardiol. 2019;40(8):1645-1654. Go to original source... Go to PubMed...
  60. Collinson P. Macrotroponin-Analytical Anomaly or Clinical Confounder. Clin Chem. 2022;68(10):1229-1231. Go to original source... Go to PubMed...
  61. Sayadnik M, Shafiee A, Jenab Y, et al. Predictors of High-Sensitivity Cardiac Troponin T Elevation in Patients with Acute Paroxysmal Supraventricular Tachycardia and Ischemic Heart Disease. Tex Heart Inst J. 2017;44(5):306-311. Go to original source... Go to PubMed...
  62. Cazzola M, Matera MG, Donner CF. Inhaled beta2-adrenoceptor agonists: cardiovascular safety in patients with obstructive lung disease. Drugs 2005;65(12):1595-1610. Go to original source... Go to PubMed...
  63. Fagbuyi DB, Venkataraman S, Ralphe JC, et al. Diastolic Hypotension, Troponin Elevation, and Electrocardiographic Changes Associated With the Management of Moderate to Severe Asthma in Children. Acad Emerg Med. 2016;23(7):816-822. Go to original source... Go to PubMed...
  64. Yozgat CY, Uzuner S, Temur HO, et al. Development of Myocardial Infarction in a 12-Year-Old Female after the Use of Inhaled Salbutamol. J Pediatr Intensive Care. 2020;9(4): 295-298. Go to original source... Go to PubMed...




Pediatrics for Practice

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.